Stirring was continued at reflux for 5 hr. and the bromide was then recovered in the usual way. The recovered bromide showed a slight increase in the amount of *trans* isomer, as evidenced by the diagnostic infrared bands of the latter, but was still very predominantly cis.

(c) The above experiment was repeated, expect that pure cis-bromide was used and the bromide was added to the silver acetate suspension one minute before bromine addition commenced. In this way, the cis-bromide was exposed to both bromine and silver bromide under the reaction conditions, rather than to silver bromide only. After 1 hr. boiling at reflux with stirring, the mixture was worked up as previously described. The product showed a marked ester band in the infrared at 5.77μ and very weak bands ascrib-

able to the *irans* isomer, the one at 11.4μ being the most prominent (about six scale divisions). However, the recovered material was still very largely *cis*-bromide.

Acknowledgment. This work was supported under Contract DA-11-022-ORD-2279 of the Office of Ordnance Research, U.S. Army. One of us (E.L. E.) wishes to express his appreciation to Dr. Robert Krall, Harvard University, for several stimulating discussions regarding the Hunsdiecker reaction.

NOTRE DAME, IND.

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CANTERBURY]

The Substituent Constant of the 3,4-Benzo Group

A. FISCHER, J. PACKER, J. VAUGHAN, A. F. WILSON, AND E. WONG

Received September 15, 1958

The effect of the 3,4-benzo substituent in different reactions has been examined by analyzing literature data, supplemented by further kinetic studies on the benzoylation of 2-naphthylamine, the alkaline hydrolysis of ethyl 2-naphthylacetate and of 2-naphthoic esters, and the acid-catalyzed esterification of 2-naphthoic acid. The substituent constant $(\sigma_{3,4-benzo})$ varies systematically with reaction type and it is possible to distinguish σ^- , σ and σ^+ values. The σ^- values display an unexpected anomaly, which is discernible also in the comparable data for the *p*-nitro substituent.

Hammett¹ calculated a value of 0.170 for the substituent constant of the 3,4-benzo substituent, using the dissociation constant of the 2-naphthylammonium ion. In testing this $\sigma_{3,4-\text{benzo}}$ value in nine other reactions he found a probable error of 0.102, one of the largest listed by him. Now for a number of reactions, plots of log k vs. σ show that the 3,4-benzo substituent is well removed from the best straight line and that a lower $\sigma_{3,4-\text{benzo}}$ value would provide a better fit. Examples of such reactions are (a) R-C₆H₄COOEt + OH⁻ in dioxane/water (Ref. 2, reaction 47L) (b) dissociation of R-C₆H₄B(OH)₂ in ethanol/water (Ref. 2, reaction 13) (c) R-C₆H₄COCH₂Br + S= $O_{CH_3}^{CH_3}$

in benzene (Ref. 2, reaction 105a) (d) dissociation of $R-C_5H_4NH^+$ in water (Ref. 14). For reaction (a) Jaffe² has already noted the marked deviation, from the linear plot, of this substituent.

Although a few independent determinations of $\sigma_{3,4-\text{benzo}}$ have been made, Hammett's value is still generally taken as the standard for reference. But if it be assumed that the benzo substituent has the ability to withdraw electrons by the conjugative mechanism (-T), then the substituent constant obtained by Hammett is likely to be a σ^- value. For reactions other than those of phenol or amine derivatives a normal σ value should apply although, with its weak conjugative withdrawal of electrons, this substituent is likely to have $\sigma^$ and σ values not greatly different in magnitude. However, it is clearly of interest to know whether such distinct values may be assigned to the 3,4benzo group and also to learn whether, with its ability to donate electrons conjugatively (+T mechanism) in suitable circumstances, the group requires also a σ^+ value under these conditions. From the literature, data of sufficient accuracy have now been found for the calculation of over 20 sigma values for this substituent. In addition, in order to extend these values, and in one case to confirm a value derived from published data, further kinetic studies have been made.

EXPERIMENTAL

Benzoylation of naphthylamines. The reaction rates of many substituted anilines were measured at 25° by Stubbs and Hinshelwood,⁸ and a smaller number of measurements were made by these workers at 40°. The data for 25° fit a Hammett plot exceptionally well in most cases but two amines, of which 2-naphthylamine is one, do not lie on the linear plot. Calculation gives the apparent $\sigma_3.4$ -benzo value as 0.06 (cf. Hammett's value of 0.17) and, to obtain confirmation of this value, the kinetics of reaction of 2-naphthylamine were re-examined using the same technique. Measurements were made over the temperature range 10-45°; the 1-naphthylamine reaction was similarly examined for general comparative purposes. Results are given in Tables I and II, and it will be seen that results at 25° agree well with those of the previous study.

Alkaline hydrolysis of ethyl naphthylacetates (in 87.83% ethanol/water). The only previous work is recorded by

⁽¹⁾ L. P. Hammett, *Physical Organic Chemistry*, McGraw-Hill Book Co., New York, 1940, Ch. 7.

⁽²⁾ H. H. Jaffé, Chem. Revs., 53, 237 (1953).

⁽³⁾ F. J. Stubbs and C. N. Hinshelwood, J. Chem. Soc., 152, S.71 (1949).

		Rate Consta (l. mole ⁻	nts k \times 10 ² ¹ sec. ⁻¹)		Arrheniu	is Data
Amine	10°	25°°	35°	45°	É(kcal. mole ⁻¹)	$ m Log_{10}A$
1-Naphthylamine	0.430	1.02	1.71	2.71	9.50 ± 0.05	4.96 ± 0.03
	0.437	0.978	1.70	2.73		
	0.438	0.967	1.66	2.79		
		0.986	1.69	2.75		
		1.02	1.76	2.72		
		1.01	1.76			
		0.974	1.75			
			1.72			
2-Naphthylamine	2.31	4.57	7.48	11.4	7.96 ± 0.05	4.51 ± 0.04
r v	2.46	4.58	7.44	11.2		
	2.50	4.73	7.38	11.1		
	2.30	4.61	7.54	11.3		
	2.34	4.46	7.44	11.7		
	2.44	4.74	7.48	10.9		
	2.33	4.61	7.38	11.3		
	2.41	4.78		10.8		

TABLE I BENZOYLATION OF AMINES

^a cf. Stubbs and Hinshelwood³ $k \times 10^2 = 1.04$ (1-naphthylamine)

= 5.12 (2-naphthylamine)

TABLE II Derived Data for Benzoylation Reactions

Amine	$k_{25^{\circ}} \times 10^{2}$ (l. mole ⁻¹ sec. ⁻¹)	E (kcal. mole ⁻¹)	Log ₁₀ A	∆∆H‡ (kcal. mole ⁻¹)	T∆∆S‡ ₂₅ ° (kcal. mole ⁻¹)
Aniline ^a	7.40	7.60	4.44	(0.00)	(0.00)
1-Naphthylamine	1.01	9.50	4.96	2.09	0.90
2-Naphthylamine	4.78	7.96	4.51	0.54	0.27

^a Stubbs and Hinshelwood.³

Rate Constants k \times 10³ (l. mole⁻¹ sec.⁻¹) Ε 20° 40° 50° 35° (kcal. mole⁻¹) Ethyl Ester 30° Log₁₀A 5.50 19.4 14.67 ± 0.12 8.66 ± 0.09 Phenylacetate 12.3^{a} 55.4 12.1^{a} 5.3319.355.3 17.4^{b} 5.37 17.7^{b} 5.261-Naphthylacetate 2.22^{b} 5.5612.425.4 15.43 ± 0.09 8.85 ± 0.07 2.23 12.525.85.6427.4 2.23^{b} 5.71 2.17^{b} 5.5526.25.58 8.69 ± 0.08 2-Naphthylacetate 6.9814.923.232.069.2 14.58 ± 0.11 32.770.7 14.723.3 6.90 22.4^{b} 34.615.0 22.5^{b} 33.9 15.1

TABLE III Alkaline Hydrolysis of Substituted Ethyl Acetates

^a Cf. Kindler's value of 10.6. ^b Obtained with reactants in unequal concentrations.

Kindler,⁴ who examined several substituted phenylacetic esters at 30°. The ethyl naphthylacetates were not included. These have now been studied, over the temperature range $20^{\circ}-50^{\circ}$, and under similar conditions to those of Kindler. Ethyl phenylacetate was also included in our work and checked with the previous study. Hence a value for $\sigma_{3,4-benzo}$ may be derived from our results used in conjunction with those of Kindler. Results are given in Tables III and IV.

Alkaline hydrolysis of ethyl and methyl 2-naphthoates (in 60% acetone/water). The experimental procedure was that

of Tommila and Hinshelwood.⁵ We included kinetic results on 1-naphthoates in an earlier communication⁶ in which compatibility between our conditions and those of Tommila and Hinshelwood was demonstrated by agreement on ethyl benzoate. Present results are given in Table V.

Acid-catalyzed esterification, in methanol, of 2-naphthoic acid. This also is an extension of work reported earlier,⁶

(5) E. Tommila and C. N. Hinshelwood, J. Chem. Soc., 1801 (1938).

(6) J. Packer, J. Vaughan, and E. Wong, J. Org. Chem., 23, 1373 (1958).

(4) K. Kindler, Ann., 452, 90 (1927).

	DERIV	ED DATA FOR REACTIC	ons in Table I	II	
Ethyl Ester	$k_{30^{\circ}} \times 10^{3}$ (l. mole ⁻¹ sec. ⁻¹)	E (kcal. mole ⁻¹)	Log ₁₀ A	$\Delta\Delta H^{\ddagger}$ (kcal. mole ⁻¹)	$T\Delta\Delta S_{30}$ °‡ (kcal. mole ⁻¹)
Phenylacetate	12.3	14.7	8.66	(0.00)	(0.00)
1-Naphthylacetate	5.44	15.4	8.85	0.76	0.27
2-Naphthylacetate	18.1	14.6	8.69	-0.09	0.03

TABLE IV Derived Data for Reactions in Table III

TA	BI	\mathbf{E}	V
----	----	--------------	---

HYDROLYSIS AND FORMATION OF 2-NAL	PHTHOIC	LSTERS
-----------------------------------	---------	--------

Ester Hydrolyzed or Acid	R	ate Constan	$t k \times 10^{4}$ (l.	mole ⁻¹ sec.	-1)	Arrheniu	s Data
Esterified	15°	25°	40°	50°	60°	E (kcal. mole ^{-1})	Log ₁₀ A
Ethyl 2-naphthoate	15.66 15.69	36.0 36.3	$119.2 \\ 120.9$	$247.1 \\ 248.5$		14.62 ± 0.03	8.29 ± 0.02
Methyl 2-naphthoate	$51.4\\51.7$	$\frac{121.2}{121.3}$	387 390	767 783		14.34 ± 0.05	8.59 ± 0.03
2-Naphthoic acid		2.05	6.85	$14.52\\14.39$	$\frac{28.94}{29.28}$	14.95 ± 0.03	7.27 ± 0.02

in which a method similar to that of Hartman and Borders⁷ was used, and in which compatibility of results between the two sets of workers was demonstrated. Results are included in Table V. Unfortunately, the σ values from this reaction prove subject to large errors. Using reaction constant (ρ) values from Jaffé,² σ values for the 3,4-benzo substituent are $\sigma_{25}\circ = 0.054$; $\sigma_{40}\circ = 0.066$; $\sigma_{60}\circ = 0.075$; $\sigma_{60}\circ = 0.079$. But the values for the correlation coefficients ($r \approx 0.4$) and the standard deviations ($s \approx 0.14$) calculated by Jaffé for these reaction series indicate that they fit the Hammett equation very poorly. Thus substituent constants obtained from these esterification experiments were not used in compiling Table VI.

DISCUSSION

In Table VI are listed the substituent constant values for the 3,4-benzo substituent, calculated from reactions for which rate or equilibrium data for 2-naphthyl derivatives are available. For many of the reactions Jaffé² has already calculated the reaction constant ρ . Where rate data for 2-naphthyl derivatives were available, Jaffé used appropriate log k values together with Hammett's $\sigma_{3.4-\text{benzo}}$ value of 0.170 in determining the corresponding ρ values. In such cases, therefore, ρ values have now been recalculated without using the rate data for this substituent. Application of the log k_{3,4-benzo} values to these newly calculated figures for ρ then gave $\sigma_{3,4-\text{benzo}}$ values. Also listed in the table are values for ρ , the correlation coefficient r, and standard deviation s of the best straight line through the points, and n, the number of substituents for which data were available. In the last column, where references are given to sources of rate data for 2-naphthyl derivatives, the absence of a reference number indicates that such rate data were obtained from direct references given in Jaffé's review.² Principles guiding selection of material for Table VI were: (i) in calculating ρ values, only σ constants given by Jaffé were included, the restriction being imposed because many σ values reported more recently have yet to be tested in other reactions. (ii) Only those reaction series with a correlation coefficient >0.95 were listed. This restriction follows Jaffé, but in the present calculations it resulted in the elimination of only one or two possible sources of $\sigma_{3,4-\text{benzo}}$ values. (iii) In certain reactions $\sigma_{3,4-\text{benzo}}$ values could be calculated for more than one temperature. In order that no particular reaction should be overweighted in the calculation of mean σ values (see later), σ in such a reaction was calculated only for the temperature at which data for the greatest number of substituents were available. This restriction also is far from severe, because σ shows little change with temperature. On the other hand, solvent variation appears to have an appreciable effect and $\sigma_{3,4-\text{benzo}}$ values, determined for the same reaction in different solvents, have been included. Reactions 1-9 are reactions of anilines, phenols, or their derivatives; reactions 10-13 cover carbinyl chloride solvolyses; reactions not entering either of the first two categories are those numbered 14-26. It is clear that reactions 14-26 are those which should require normal σ values; reactions 10–13 presumably demand σ^+ values, and to reactions 1–9 σ^- values should apply. The calculated σ values do indeed group themselves accordingly, although the substituent constants for phenol and amine reactions (1-9) are less internally consistent (see later, however).

Reactions other than aniline, phenol and solvolysis reactions. The mean value of σ from reactions 14– 26 is 0.042 \pm 0.030. Two comments may be made concerning the small error on this mean value. First, no reaction with a negative ρ value is included in this set of reactions and it appears that such data are neither available nor readily obtainable. However, the range of positive ρ values

⁽⁷⁾ R. J. Hartman and A. M. Borders, J. Am. Chem. Soc., 59, 2107 (1937).

Iteaction	U3 4-benao	d	1	8	u	Reference	Description
1	0.120	2.798	0.999	0.046	13		RC ₆ H ₄ NH _a ⁺ — RC ₆ H ₄ NH ₂ + H ⁺ in water at 25°
63	0.153	-0.947	0.993	0.062	6		$RC_6H_4O^- + CH_2CH_2O \longrightarrow RC_6H_4OCH_2CH_2O^-$ in 98% ethanol/water at 70.4°
co 4	$\begin{array}{c} 0.184 \\ 0.219 \end{array}$	-0.770 0.598	$0.987 \\ 0.987$	$\begin{array}{c} 0.068 \\ 0.053 \end{array}$	$\begin{array}{c} 0\\ 14\end{array}$		$RC_6H_4O^- + CH_3 \overline{CHCH_2O} \longrightarrow RC_6H_4OCH(CH_3)CH_2O^-$ in 98% ethanol/water at 70.4° $RC_6H_4OSO_2OH + H^+ \longrightarrow RC_6H_4OH + SO_2OH^+$ in water at 48.7°
ũ	0.154	1.450	0.999	0.020	4		$RC_6H_4O NO_2 + CH_3O^- \longrightarrow RC_6H_4OCH_3 + O^ NO_2$ in methanol at 20° NO.
9780	$\begin{array}{c} 0.046 \\ 0.070 \\ 0.066 \\ 0.053 \end{array}$	$\begin{array}{c} 2.099 \\ -1.245 \\ -3.220 \\ -1.545 \\ -1.545 \end{array}$	$\begin{array}{c} 0.991 \\ 0.997 \\ 0.999 \\ 0.983 \\ \end{array}$	$\begin{array}{c} 0.077 \\ 0.026 \\ 0.051 \\ 0.104 \end{array}$	17 8 10 18	8 Present work	$ \begin{array}{c} \mathrm{RC}_{6}\mathrm{H,OH} & \longrightarrow \mathrm{RC}_{6}\mathrm{H,OH} & \longrightarrow \mathrm{RC}_{6}\mathrm{H,O}^{-} + \mathrm{H}^{+} \mathrm{in} \ \mathrm{water} \ \mathrm{at} \ 25^{\circ} \\ \mathrm{RC}_{6}\mathrm{H,OH} + \mathrm{HCOOH} & \longrightarrow \mathrm{RC}_{6}\mathrm{H,NHCHO} + \mathrm{H}_{2}\mathrm{O} \ \mathrm{in} \ 67\% \ \mathrm{pyridine/water} \ \mathrm{at} \ 100^{\circ} \\ \mathrm{RC}_{6}\mathrm{H,NH}_{2} + \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{COCI} & \longrightarrow \mathrm{RC}_{6}\mathrm{H,NHCOC}_{6}\mathrm{H}_{3} + \mathrm{HCI} \ \mathrm{in} \ \mathrm{benzene} \ \mathrm{at} \ 25^{\circ} \\ \mathrm{(}_{10008}\mathrm{N}\mathrm{N}\mathrm{C}_{6}\mathrm{H,NH}^{-} & -\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{COOOH} & \longrightarrow \mathrm{(}_{10008}\mathrm{N}\mathrm{N}\mathrm{C}_{6}\mathrm{H,NH}\mathrm{N}\mathrm{H}^{-}\mathrm{COOH} \\ \mathrm{(}_{100008}\mathrm{N}\mathrm{N}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{N}\mathrm{N}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} & \longrightarrow \mathrm{(}_{10008}\mathrm{N}\mathrm{N}\mathrm{C}_{6}\mathrm{H,N}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{10008}\mathrm{N}\mathrm{N}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{100080\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} & \longrightarrow \mathrm{(}_{100080\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{100080\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{100080\mathrm{N}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{100080\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{100080\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H} \\ \mathrm{(}_{100080\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{H}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm{O}\mathrm$
11 13 13 13	-0.132 -0.188 -0.147 -0.113	-4.639 -4.376 -2.606 -4.669	$\begin{array}{c} 1.000\\ 0.997\\ 0.994\\ 0.993\end{array}$	0.07 0.14 0.11 0.06	12 5 5	9 11 11	$ \begin{array}{l} \label{eq:constraint} \mbox{RC}H_{3}(CH_{3})C(1) + H_{2}(0) \longrightarrow \mbox{RC}_{6}H_{4}C(CH_{3})_{3}(0) + H(C)\ in 90\% \ acctone/water at 25^{\circ} \\ \mbox{RC}_{4}H_{4}CH(C_{6}H_{5})C(1) + C_{3}H_{5}(0) + \cdots > \mbox{RC}_{6}H_{4}CH(C_{6}H_{5})(C_{3}H_{5} + H(C)\ in \ ethanol\ at 25^{\circ} \\ \mbox{RC}_{4}H_{4}CH(C_{6}H_{5})C(1) + C_{2}H_{5}(0) H \longrightarrow \mbox{RC}_{6}H_{4}CH(C_{6}H_{5})(C_{3}H_{5} + H(C)\ in\ ethanol\ at 25^{\circ} \\ \mbox{RC}_{4}H_{4}CH(C_{6}H_{5})C(1) + (CH_{3})_{3}CH(0) H \longrightarrow \mbox{RC}_{6}H_{4}CH(C_{6}H_{5})(CH(CH_{3})_{2} + H(C)\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}H_{5}(0) H + (CH_{3})_{3}CH(0) H \longrightarrow \mbox{RC}_{6}H_{4}CH(C_{6}H_{5})(CH(CH_{3})_{2} + H(C)\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}H_{5}(0) H + (CH_{3})_{3}CH(0) H \longrightarrow \mbox{RC}_{6}H_{4}CH(C_{6}H_{5})(CH(CH_{3})_{2} + H(C)\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}H_{5}(0) H + (CH_{3})_{3}CH(0) H + (CH_{3})_{3}CH(0) H + (CH_{3})_{3} + H(C)\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}H_{5}(0) H + (CH_{3})_{3}CH(0) H + (CH_{3})_{3} + H(C)\ in\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}H_{5}(0) H + (CH_{5})_{3}CH(0) H + (CH_{5})_{3}CH(0) H + (CH_{5})_{3} + H(C)\ in\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}(0) H + (CH_{5})_{3}CH(0) H + (CH_{5})_{3}CH(0) H + (CH_{5})_{3} + H(C)\ in\ in\ isopropyl\ at 0^{\circ} \\ \mbox{RC}_{6}(0) H + (CH_{5})_{3}CH(0) H + (C$
11 16 16	$\begin{array}{c} 0.042 \\ 0.084 \\ 0.045 \\$	$1.000 \\ 0.483 \\ 2.137 \\ 0.70$	$\begin{array}{c} 0.981 \\ 0.996 \\ 0.996 \\ 0.956 \end{array}$	$\begin{array}{c} 0.033\\ 0.062\\ 0.104\\ 0.104\end{array}$	14	12 13	$\begin{array}{c} RC_{H,COOH} \underbrace{\longrightarrow}_{COOH} RC_{H,COO}^{23} + H^{+} \text{ in water at 25}^{23} \\ RC_{H,CH_{2}COOH} \underbrace{\longrightarrow}_{COOH} RC_{H,QCOO}^{2} + H^{+} \text{ in water at 25}^{25} \\ RC_{H,B}(OH)_{2} \underbrace{\longrightarrow}_{CO} RC_{H,B}(OH)O^{-} + H^{+} \text{ in 25}\% \text{ ethanol/water at 25}^{25} \\ RC_{H,D}(OH^{-} \underbrace{\longrightarrow}_{CO} RC_{H,A}(OH)O^{-} + H^{+} \text{ in water at 39}^{25} \end{array}$
5 0 18 1	$\begin{array}{c} 0.032\\ 0.084\\ 0.079\\ 0.079\end{array}$	0.961 5.685 2.537	0.920	0.104 0.077 0.147 0.067	1403	14 15	RCHAROOCH \sim RCHAROCO + H + in water at 25 RCHAROCH \sim RCHAN + H + in water at 25 RCHAROCH + \rightarrow RCHAN + H + in water at 23°-25° RCHAROCH + OUT \sim RCHAROCO + CHAROH at 25°
22222	0.031 0.036 0.042 0.000	2.310 2.265 0.824 0.824	$\begin{array}{c} 0.999\\ 0.984\\ 0.995\\ 0.974\end{array}$	$\begin{array}{c} 0.020\\ 0.141\\ 0.106\\ 0.105\end{array}$	611 11 12 22 0	Present work Present work Present work	RCHLOOCCH15 + OH \longrightarrow RCHLOOV + C2H5OH in 60% acctone/water at 25 RCHLOOCCH3 + OH \longrightarrow RCHLOOV + C4b0H in 60% acctone/water at 25 RCHLOOCCH3 + OH \longrightarrow RCHLOOV - + CH5OH in 60% acctone/water at 25 RCHLCH2COOC3H5 + OH \longrightarrow RChLCH2COO - + C2H5OH in 87.83% ethanol/water at 30°
							$RC_{6}H_{4}COCH_{2}Br + S = \underbrace{O}_{CH_{3}}CH_{3}$
25	-0.005	0.862	0.982	0.064	6		CH_3 in benzene at 14.8° in CH_3
26	0.060	0.618	0.980	0.050	4		$RC_6H_4SO_2CH_2S- \bigcirc O' + Br^-$ RC_6H_4SO_2CH_2CH_2CI + I> RC_6H_4SO_2CH_5CH_2I + CI^- in acctone at 75°

SUBSTITUENT CONSTANT VALUES FOR THE 3,4-BENZO GROUP TABLE VI

158

covered is from 0.483 to 5.685. Within this range no trend in σ is observed and there seems to be no reason to expect a variation if the range were extended to negative reaction constants. Second, in certain of the reactions (i.e. reactions 14, 16-18, 20-23) weak resonance interaction between a -T side-chain and a +T para substituent should be possible. In each case, however, there is crossconjugation in the side-chain itself and it is evident that in these cases any side-chain-substituent resonance has a negligible effect on the substituent constant.

Carbinyl chloride solvolyses. The mean $\sigma^+_{3,4-\text{benzo}}$ value from reactions 10-13 is -0.145 ± 0.028 . It is true that the four reactions listed are similar in type and that it would be desirable to obtain data for the 3,4-benzo substituent on reactions of different types which still require σ^+ values. However, Okamoto and Brown⁹ have shown that σ^+ for other +T substituents (e.g. p-OCH₃) have a remarkably wide applicability.

Reactions of anilines, phenols and their derivatives. Reactions 1–9 are those which appear to require σ^{-} values. Of the listed reactions the highest substituent constants are those for reactions 1-5. These are presumably uncomplicated $\sigma_{3,4-\text{benzo}}$ values, the mean of which is 0.166 ± 0.033 . In support of this assumption, other -T substituents such as the well studied p-nitro group also require their accepted σ^- values in these reactions. For reactions 6–9, however, the substituent constants are significantly lower and distinction between the two sets appears to be real. In only one earlier investigation have unexpectedly low σ^- values been particularly noted and that was by Bordwell and his coworkers,^{16,17} who measured pK_s values for certain phenols and thiophenols. The substituents concerned were the p-NO₂ and p-CH₃SO₂ groups. This work, and Bordwell's suggested explanation. indicate that large differences in the abilities of side-chains to enter into conjugation with a given substituent result in a variation in the σ^- value. In the present case, however, we cannot even suggest a single explanation, of low σ^- figures, which would cover the three "amine" reactions 7-9.

(8) K. Lauer, Ber., 70B, 1127 (1937).

- (9) Y. Okamoto and H. C. Brown, J. Org. Chem., 22, 485 (1957).
- (10) J. Packer, J. Vaughan, and A. F. Wilson, J. Org. Chem., 23, 1215 (1958).
- (11) G. E. K. Branch and A. C. Nixon, J. Am. Chem. Soc., 58, 2499 (1936).
- (12) J. F. J. Dippy, S. R. C. Hughes, and J. W. Laxton, J. Chem. Soc., 157, 1470 (1954).
- (13) J. F. J. Dippy, S. R. C. Hughes, and J. W. Laxton, J. Chem. Soc., 157, 4102 (1954).
- (14) H. H. Jaffé, J. Am. Chem. Soc., 77, 4441 (1955).
 (15) P. Fitzgerald, J. Packer, J. Vaughan, and A. F. Wilson, J. Chem. Soc., 159, 170 (1956).
- (16) F. G. Bordwell and H. M. Anderson, J. Am. Chem. Soc., 75, 6019 (1953).
- (17) F. G. Bordwell and G. D. Cooper, J. Am. Chem. Soc., 74, 1058 (1952).

As far as these reactions are concerned, the results appear reliable and for reaction 8, for example, the substituent constant obtained in the present work confirms that derived from the study of Stubbs and Hinshelwood.³ Furthermore, these "low σ -" values for the 3,4-benzo substituent run parallel to similar low σ^- values for the *p*-nitro group (the only other -T substituent for which satisfactory rate data are available) in these and other amine reactions. This is demonstrated in Table VII. The comparative substituent constants given by Hammett are: $\sigma_{3,4-\text{benzo}} = 0.170$; $\sigma_{p-\text{nitro}}$ = 1.270, and data are drawn from references in Jaffé's review with the exception of reactions 8 and 8a (present work).

TABLE VII

SUBSTITUENT CONSTANTS IN A	AMINE REACTIONS
----------------------------	-----------------

Reac- tion	Apparent $\sigma^{-3,4-\text{benzo}}$	Apparent $\sigma^{-}p$ -nitro	ρ	r	8	n
7	0.070		-1.245	0.997	0.03	8
8	0.066	1.022	-3.220	0.999	0.05	10
$8a^a$	0.064	0.975	-3.167	0.995	0.03	3
9	0.053	1.043	-1.545	0.983	0.10	18
9a°	0.054	1.056	-1.488	0.982	0.10	18
27°		1.022	-3.192	0.997	0.09	6
28°		0.980	-3.398	1.000	0.01	4

^a Reaction 8a is reaction 8 at 40°. ^b Reaction 9a is reaction 9 at 15°. c Reactions 27 and 28:

$$\begin{array}{ccccccc} R & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

in benzene at 25°.

For reaction 27, $X = CH_3$. For reaction 28, $X = OCH_3$.

The differences between the apparent σ^{-} figures and the normally accepted figures originally derived by Hammett appear to be appreciable and, for example, when Hammett plots are made for reactions 7, 8, and 28 there are significant and striking deviations of these two substituents from otherwise accurately linear plots when the Hammett σ^{-} values are used.

It is evident that further information is desirable about the "accepted" σ^- values for -T substituents in amine reactions (reaction 1 is the sole example) and about "low σ -" values for such substituents in phenol reactions (reaction 6 is the sole example). Without such information it can only be stated that in reactions 1-5 the difference in resonance interaction (involving substituent and sidechain) between reactant and product (or transition state) appears to be markedly greater than this difference for reactions 6-9.

CHRISTCHURCH, NEW ZEALAND